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1. Introduction 
A wide variety of systems exhibit critical phenom- 

ena. In  liquid-vapor systems the critical point is 
displayed in a pressure-density diagram as the point of 
vanishing slope and curvature of the isotherm for the 
critical temperature. In  binary liquid systems, the 
chemical potential and the mole fraction of one of the 
components are the appropriate variables, instead of 
pressure and density. 

The isotherms for a ferromagnetic material are ex- 
hibited schematically in Figure 1, in which it is seen 
that the magnetic field H and magnetization M take 
the place of pressure and density, respectively. It is 
assumed that the magnetic field is always in a fixed di- 
rection, but may be positive or negative. At high tem- 
peratures the magnetization decreases gradually as the 
field is decreased but at low temperatures a permanent 
magnetization remains at  zero field, which changes 
sign as the sign of the field is reversed. The tempera- 
ture dividing these two regions is known as the critical 
temperature, the h temperature, or the Curie tempera- 
ture. 

In  all these cases the variables mentioned may be 
regarded as those primarily associated with the order- 
disorder phenomena. In other cases, the order-disorder 
variables are more subtle, and cannot be experimentally 
manipulated. Such is the situation, for example, a t  
the X transition of liquid helium, or a t  the order- 
disorder transition of a binary alloy, 

As further examples, we may consider certain theo- 
retical models. In particular, we may make note of the 
Ising lattice.’ At each point on the lattice there is 
supposed to be located an elementary spin, with a 
magnetic dipole which can be oriented in one of two 
directions (say, up or down) and which interacts with 
a nearest neighbor so that the mutual potential energy 
depends upon whether they are oriented in the same or 
opposite directions. Such a lattice is also mathemat- 
ically equivalent2 to a lattice gas (where some of the 
lattice positions are occupied by atoms and some are 
empty) or a mixture (in which some of the positions are 
occupied by atoms of one kind and the rest by atoms of 
another). The model is thus relevant not merely to 
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magnetic systems but also to liquid-vapor systems, to 
binary solutions, and to  the order-disorder phenomena 
in binary alloys. 

The critical point is a singular point or near singular 
point for the thermodynamic functiom3 Holding the 
density constant for the liquid-vapor system (or the 
equivalent variable for other systems), the specific heat 
rises rapidly as the critical temperature, T,, is ap- 
proached from below (within the two-phase region in 
the liquid-vapor system), then falls even more rapidly 
as the critical temperature is exceeded, as in Figure 2. 
Indeed, it has been commonly supposed that the spe- 
cific heat rises to a logarithmic infinity or that of a very 
small power, a, of 1/IT - T,l. Here a, which is called 
a critical exponent, is close to  zero, but may be differ- 
ent for T > T ,  and T < T,. It may be that the specific 
heat curve is in some or all cases actually rounded off a t  
a fairly high value,4 but we shall treat the approach to 
infinity as the normal situation. It is known to be 
logarithmically infinite in the two-dimensional rigid 
Ising 1attice.j In  the three-dimensional case an exact 
solution has not been possible, but the thermodynamic 
functions have been expressed in terms of series expan- 
sions6 whose behavior indicates that the specific heat 
approaches infinity logarithmically or as a small power 

For ex- 
ample, in the liquid-vapor system l p  - pCl along the 
coexistence curve (where p is density and pr critical 
density) depends on IT - T,/ as IT - Tc/@,  where 1 / p  
is close to  3, and hence is not a simple parabola as cx- 
pected from the classical van der Waals theory. The 
slope of the isotherms, e.g., ( d P / b p ) ~ ,  approaches zero 
as (T  - TJY above the critical point with y = 5/4. 
The critical isotherm is always much flatter than would 
be predicted by the van der Waals theory. Similar re- 
sults, in the appropriate variables, are obtained in other 
systems. 

The variables listed in the introductory paragraph, 
those directly associated with the order-disorder phe- 
nomena, are the primary variables. There are ot,her 
variables which affect the critical phenomena, to which 
we shall refer as secondary variables. 

of 1/1T - !Pel. 
Other properties* also show singularities. 
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Figure 1. Isotherms for a ferromagnet. Middle curve for To; 
inner curve I' > To;  outer curve I' < To, showing first-order 
transition. 

For example, in the magnetic case the X temperature 
will depend upon the pressure or the density. Thus, 
pressure and density are secondary variables in this 
case, though they are primary variables for a liquid- 
vapor system. If one constructs a diagram in the plane 
of a pair of secondary variables (e.q., pressure and 
density in the case of a magnet or liquid helium), then 
it is seen that a X line in this plane (or, what is the same 
thing, a locus of critical points) is a line of singularities. 

It is possible to apply thermodynamic reasoning to 
such a line provided one is careful in approaching the 
limits in which certain thermodynamic quantities be- 
come infinite.7 One can also venture slightly beyond 
thermodynamics8 by making the assumption that the 
partition function of the system can be factored into a 
lattice part, depending upon the properties of the sys- 
tem as it would be if no order-disorder phenomena oc- 
curred, and an order-disorder part, depending upon a 
dimensionless parameter JIlcT, where J is an energy 
parameter describing the interaction between the enti- 
ties responsible for the order-disorder effects. The 
characteristics of the partition function as a function 
of J / k T  are responsible for the singularities a t  the 
critical point. J itself is supposed to depend only on 
the density or the pressure (or one of another pair of 
secondary variables), These assumptions lead to 
further relationci which are almost thermodynamic in 
character and which are helpful for understanding the 
nature of the critical phenomena. 

Interestingly, the character of the results depends 
greatly upon which one of the secondary variables J 
depends on. When the density p and the pressure P 
are t'he secondary variables, it  is found that, if J de- 
pends only on P, so that it is the specific heat a t  con- 
stant pressure, C,, which tends to become infinite, no 
difficulties arise. On the other hand, if J depends on 
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Rev., 153, 275 (1967). 

Figure 2. 
near its point. 

Specific heat (cal mole-' deg-1) of liquid helium 

the density and C,, the specific heat a t  constant volume, 
tends to become infinite, an instability results: either 
the transition turns into a first-order one, or the infinity 
in C, is in some way avoided. Put  in another way, the 
conditions of thermodynamic stability put an upper 
limit on C, but none on C,. 

In  order to gain a better insight into the physical 
significance of these results, let us fix our attention upon 
an Ising lattice. The theory of the magnetic behavior 
of the Ising lattice is based on the assumption that the 
lattice is rigid and that the distance between the mag- 
netic spins is thus fixed. One would naturally suppose 
that the interaction between the magnets would depend 
upon the distance between them. Thus the critical 
point would depend on the density, but since, a t  con- 
stant pressure, the density depends upon the tempera- 
ture, it is seen that there will be an interaction between 
the spins and the lattice forces. For example, i t  can be 
seen that if the distance between spins affects the orien- 
tation of the spins, the thus-induced spin forces, in 
turn, contribute to the forces between the atoms, and 
so affect such properties as the compressibility and 
coefficient of expansion. It is this interaction between 
the various forces involved that we wish to discuss. 

According to this description the interaction energy J 
depends on the density. Then it is C, which tries to 
become infinite; hence an instability sets in and the 
transition should change to first order. In real systems 
this has not been often observed, and, as we shall see, 
it  may be that the infinity is avoided because of the 
fluctuations of individual atoms about their lattice 
points, or (what is not entirely unrelated) because of 
the presence of domains in magnetic materials, or be- 
cause of a microcrystalline structure, even without the 
intervention of a first-order transition. 

The foregoing involves the approximation that the 
interaction energy J depends upon one of the macro- 
scopic variables, such as pressure or density. It was 
early r e c ~ g n i z e d , ~ ~  however, that, on account of fluctua- 
tions, the interaction energy might have local varia- 
tions, which in any more precise theory would need to 
be taken into account. It was suggested by Fisher4 
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that through such local variations the infinities in the 
specific heat might be avoided, and this appears to be 
the case for some models which have recently been pro- 
posed and worked outsg In perhaps the most realistic 
of these modelsjgd allowance was made for the possible 
variation of J with the distance between nearest neigh- 
bors, the normal lattice interactions were taken into 
account, and a shear-resisting force was introduced so 
that a simple cubic lattice could be used without exces- 
sive fluctuations along the lines of atoms. In this case 
a first-order transition did appear in the critical region, 
so that some of the properties of the simple thermody- 
namic model were retained. 

In so-called mean-field theories, the behavior of any 
given spin in a magnetic lattice is assumed to depend 
only on the average value of the interaction (that is, 
the result of averaging J over all neighbors and then of 
further averaging over all sites in the lattice). This 
type of theory can explain the existence of critical 
points, but does not give the correct values of the criti- 
cal exponents. The assumption that J ,  itself, depends 
only on a macroscopic variable, which we may call the 
mean-position theory, is a weaker assumption, but one 
that is somewhat related to (and, indeed, included in) 
the mean-field theory. The true situation, which in- 
volves local fluctuations, can be Iikened to a super- 
position of a range of cases of the mean-position theory, 
which results in a rounding off of infinities. The mean- 
position theory can thus explain, perhaps not com- 
pletely, but in a simple and reasonably satisfactory 
fashion, many of the phenomena which occur, and this 
paper will be largely devoted to working out the ther- 
modynamics and statistical thermodynamics of this 
model. 

If rounding off lowers C, sufficiently, then the in- 
stability does, indeed, disappear, but even a tendency 
for C, to exceed a certain value will result in an insta- 
bility. This, indeed, appears to occur in the ammonium 
halides, which we will discuss in Section 6. Ammonium 
chloride and bromide show X transitions with marked 
anomalies in the specific heat. These appear to be con- 
nected with an order-disorder transition involving the 
orientation of the NH4+ ions. Above the X point these 
crystals have the cesium chloride structure in which 
each NH4+ is surrounded by eight halide ions a t  the 
corners of a cube, and two orientations of the NH4+ 
tetrahedra are possible in which each hydrogen is 
pointed toward a halogen. The orientations of NH4f 
ions are random a t  high temperatures but correlated 
a t  low; in NH4Br the transition is accompanied by a 
change in crystal structure, but not in NH4C1. 

An example in which C, apparently tends to infinity 
is furnished by the X transition of liquid helium, which 
is discussed in Section 5 .  At normal pressures helium 
remains liquid to 0°K because of its large zero-point 
motion. It has zero entropy under these conditions, 
and hence a t  0°K it is a liquid in its ground state. The 

(9) (a) H. Wagner, Phgs. Rev. Lett., 25, 31 (1970); (b) H. Wagner 
(e) G. A. Baker, Jr., and 

(d) G. A.  Baker, Jr., 
and 6. Swift, 2. Phys ik ,  239, 182 (1970); 
J. W. Essam, Phys .  Rev. Lett., 24, 447 (1970); 
and J. W. Essam, J. Chem. Phys. ,  5 5 ,  861 (1971). 

excitations which occur a t  high temperatures are of two 
principal types, phonons and rotons (with some of 
intermediate character which because of the higher 
energy required are unimportant). The phonons are of 
the nature of sound waves, and are like the longitudinal 
waves in the Debye spectrum of a solid. They are ex- 
cited a t  the lowest temperatures. The rotons are 
localized excitations, something like the vibration of a 
single atom in the field of its neighbors, and require 
about 16 cal/mole for their excitation. They become 
important above 1°K. Because of the energy required, 
the specific heat rises since the rotons are excited more 
readily as the temperature increases. However, near 
the X temperature the specific heat rises extraordinarily 
rapidly (see Figure 2) and appears to approach infinity 
logarithmically as this temperature is approached. 
(Incidentally a number of remarkable changes in the 
properties of the liquid occur at the X point; for ex- 
ample, below the X point it is a superfluid, which offers 
no viscous resistance to flow at small velocities, while 
above the X point it is normal in this respect.) As will 
be noted in Section 5 ,  the energy quantity primarily 
involved with the X phenomenon seems to be the energy 
of interaction between the rotons, which we again call J ,  
rather than the energy of excitation. This being the 
case, we can give a plausibility argument to explain 
the apparent dependence of J on pressure rather than 
density. The rotons, themselves, have a slightly differ- 
ent density than the rest of the fluid. Since the number 
of rotons increases rapidly with pressure, it may well 
be that the material between them would remain in a 
more uniform state at constant pressure than at con- 
stant density. Since the interaction between rotons is 
presumably transmitted through the intervening ma- 
terial, it should not be surprising if J depends primarily 
on P rather than on p .  KO instability, then, is to be ex- 
pected. 

2. Thermodynamics 
Consider first the situation in which J depends on P 

and C, tends to become infinite. We shall wish to fol- 
low C, as the temperature changes along an isobar. We 
may write7& 

(bC,/bT), = - (bC,/bP)T(bP/bT),, (2.1) 

(bC,/bP)r = T(b2X/bTbP)V = - T(bV/bT2) ,  ( 2 . 2 )  

Since C, = T(dX/dT),, we have 

from the Maxwell relation ( ~ X / B P ) T  = - (dV/bT)p. 
Substituted into eq 2.1 this gives 

(bC,/bT)p = T(b2V/dT2)p(bP/dT)cp (2.3) 

Along the X line C, is infinite, so we write 

lim (bP/bT),, = dPA/dT (2.4) 
cp--l m 

and substituting into eq 2.3 we find that, in the immedi- 
ate neighborhood of the X line 

(BC,/bT)p = T(b2V/bT2)&'A/dT (2 .5)  

which may be integrated approximately to give" 
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C, = T(6V/bT),dPk/dT + K,(P) (2.6) 

where K, is a constant of integration which is negligible 
close to  the X line where C, is very large. If K, is truly 
constant a t  constant P, then, since C, = T(bS/dT), 
and (bV/dT), = -(dS/dP),, we see that K~ = 

Equation 2.5 is analogous to the Clapeyron and the 
Ehrenfest equations. Since the ratio of C, to  (bV/bT), 
and the ratio of (bC,/bT), to (b2V/bT2), are virtually 
constant very close to the X line, we may integrate be- 
tween two temperatures T‘ and T“  very close to the X 
line such that T”  > Tk > T’. We find 

ThdSJdT. 

where AH is the “heat of transition” and AV is the 
“volume change of transition” between the tempera- 
tures T’ and T“. The analogy to the Clapeyron equa- 
tion is now clear. The analogy to the Ehrenfest equa- 
tion is seen by writing 

where a = V-l(bV/dT)p is the coefficient of expansion. 
The behavior of the other differential coefficients can 

be determined from the equation 

(bJ‘/bT)cp = (bV/bT)p + (bV/bP)~(bP/bT)c, (2.9) 

lim (BV/bT),, = dVx/dT (2.10) 
Since we see that 

cp-+ m 

which is in general finite, and since (dV/bT), becomes 
infinite, we see that (bV/bP)T must become infinite. 
Furthermore, since (bV/bT),dP,/dT must have the 
same sign as C,, which is always positive, i t  is seen 
from eq 2.9 and 2.4 that ( ~ V / Z I P ) ~  must remain nega- 
tive. The isotherms in this case appear as in Figure 3. 

We may derive one further relation from eq 2.11, 

@P/bT)cp = (bP/bT)v + (bP/bV)~(bV/dT)c, (2.11) 

Inasmuch as (i3P/dV)T = (bV/dP)T-l approaches 
zero as the X line is approached it is seen that 

dPk/dT = (bP/bT)V (2.12) 

Very similar equations can be derived for the case 
in which C, tends to  become infinite. All that is neces- 
sary is to interchange P and V in the equations. But 
it must be noted that, because the relevant Maxwell 
equation, (d~S/bFr)~ = (bP/bT),, has no minus sign, 
we derive, instead of eq 2.5 

(bC,/bT), = - T(b2P/bT2)VdV~/dT (2.13) 

with a minus sign. Integrating 

C, = -T(bP/bT)vdVJdT + K,(V) (2.14) 
(10) A. B. Pippard, Phil. Mag., 1,473 (1956); “Elements of Clas- 

sical Thermodynamics,” Cambridge University Press, Cambridge 
1957, Chapter 9. 

I i 

V V 
Figure 3 (left). 
Figure 4 (right). 

P-V isotherms when C ,  becomes infinite. 
P-Visotherms when C, becomes infinite. 

In  this case (dP/bT), becomes infinite, but since 
(dP/dT),dVk/dT must have the opposite sign to C, 
and hence be negative, it  is seen from eq 2.10 and 
2.11, which are of general validity, that (bP/bV)T 
must become positively infinite if (bP/dT)cp is to re- 
main finite. This gives isotherms such as shown in 
Figure 4, with a van der Waals loop, leading to an in- 
stability, so an infinite C, can never actually be at- 
tained. This can be resolved by a first-order transition 
occurring at  a pressure determined by the Maxwell 
equal-area construction. 

In  this case we may also derive 

dVk/dT = (bV/bT)p (2.15) 

where V and Vh refer to the volume in the unstable 
region where C, would be infinite. It is also clear from 
these results that, quite aside from the instability, in- 
finite C,’S and infinite C,’s would be mutually incom- 
patible along the same X line. 

3. Generalized Thermodynamics 
These results can be generalized. There is an infinite 

category of variables, Y, which we shall call volume- 
like, the condition being that (bY/dV)T and (bY/bT). 
are finite and (bY/bV)T is nonvanishing. We can also 
define a variable complementary to Y by the equation 
[(Y) signifies path of constant Y ]  

2 = ST‘ (bS/bY)TdTw (3.1) 

where TI is an arbitrary constant. Differentiating, we 
obtain a generalized Maxwell equation 

(bZ/bT)y = (bS/bY)r (3.2) 

Dividing both sides of eq 3.2 by (bZ/dY)T gives the 
complementary Maxwell relation 

(bY/bT)z = - ( b S / b z ) ~  (3.3) 

and by integrating 

Y = -JT: (bS/dZ)rdTm (3.4) 

We shall see that 2 is a pressure-like variable in the 
sense that (bZ/bP) T is everywhere finite and nonvanish- 
ing and (dZ/dT), is everywhere finite, if Y is volume- 
like. In  the meantime, the relations between Y and Z 
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being just like those between V and P, we may general- 
ize the equations of Section 2. 

If C, tends to approach infinity along a X line 

dYh/dT = (bY/dT)z  (3.5) 

C, = --T(bZ/dT)YdYJdT + K,(Y) (3.6) 
and 

(dZ/bY)r  + a (3.7) 
with the same sign as C,. 

If C, approaches infinity along a X line 

dZx/dT = (dZ/bT)y (3.8) 

(3.9) C, = T(bY/bT)zdZ,/dT + K,(Z) 

and 

(bY/bZ)r --f m (3.10) 

with the opposite sign to C,. Similarly to C, and C,, 
C, and C, could not both be infinite along the same line. 

It is also possible to relate C, to C, and C, to C,. 
Thus , 
C, = T(dX/bT)y = T(dS/bT) .  + 

T(bS/b V )  T (b  V / b  T )  y 

= c, + T(bP/bT),(bV/dT)y 

= c, + T(bX/bY),(bY/bV),(bV/bT)y 
= C, - T(dZ/bT)y(bY/bT), 

and, similarly 

c, = c, - T(bV/bT),(dP/bT)z 

= c, + T(bY/bT),(bZ/bT), 

Also 

c, = T(dS/bT) ,  = T(bX/bT)y + 

= c, + T(bZ/bT)y(bY/dT), 

T(bS/dY)T(bY/bT). 

(3.11) 

(3.12) 

(3.13) 

which, like the relation between C, and C,, can be 
transformed in various ways. 

Since (bY/dT) ,  will not in general be equal to 
(bY/bT)., comparison of eq 3.6 and the last line of 
eq 3.11 shows that C, and C, would become infinite 
together if the stability criterion did not need to be 
considered. 

Similarly, the infinities of C, and C, are bound to- 
gether. Thus, it is seen that there is a category of 
specific heats, C,, where Y is volume-like, which have 
a common line of singularities, and another category, 
C,, where (as we shall show) 2 is pressure-like, which 
have a common line of singularities, and these lines 
cannot coincide or cross. 

We shall now show that, if Y is volume-like, Z is 
pressure-like. In  general, no problem arises, except a t  
X lines. First consider one where C, becomes infinite. 
Along such a line C, and C, are finite (again, of course, 
this is a mathematical conclusion, obtained by ignoring 

the instability); therefore, by eq 3.12 and since 
(bY/bT)z  is, by eq 3.5, not zero, (bZ/dT) ,  is finite. 
To investigate (bZ/bP) T divide the Rlaxwell relation 
(bV/bT)p = - (bS/bP)r by eq 3.3. This yields 

(dz/dP)r = (bV/bT)p/(dY/bT)z (3.14) 

and shows at  once that (bZ/bP)T is finite and nonzero 
if the X line has a finite nonzero slope in the V-T and 
Y-T planes. 

On the other hand, if C, and C, become infinite along 
the X line, we note that (bZ/bT), is finite and nonzero, 
and, since (bP/bV),  is zero and (bV/bT). is finite, 
(bP/bT),  = (BP/bT),. Thus 

(bZ/bT)y = (dZ/bT)p + (b2/dP)~(bP/dT), (3.15) 

Similarly, since P and 2, and V and Y ,  are simultane- 
ously interchangeable 

(bP/bT)v (bP/bT)z + (bP/bZ)r(dZ/dT)y (3.16) 

S o w  (bZ/dT), and, by eq 2.12, (BP/bT),  are finite 
and nonzero. If C, and C, become infinite in the same 
way we see from eq 3.12 that (bZ/bT) ,  and (bP/bT),  
are finite, so, by eq 3.15-3.16, (bZ/dP) ,  and (bP/dZ) ,  
are both finite, and hence nonzero, and we see that Z 
fulfills the condition for being pressure-like. If we do 
not wish to assume that C, and C, necessarily become 
infinite in the same way, we can, by an argument simi- 
lar to that of the preceding paragraph, show at  least 
that if Z is pressure-like then Y must be volume-like; 
so in any case we must have a large class of pairs of 
complementary variables, one of the pair being volume- 
like, the other pressure-like. 

The relations of this section can be used to derive 
some useful results. For example, an equation found 
by Buckingham and Fairbank" for C, along a X line 
where C, becomes infinite can be found from the 
second line of eq 3.11 if we set Y = C,. Of course C, 
is not a volume-like variable, but eq 3.11 does not de- 
pend on this. So we find 

C, = Ccp - T(dP/dT),(dV/dT)c, 

or, letting C,  --+ m and noting eq 2.10 and 2.12 

C,,x = ThdSh/dT - Th(dPx/dT)dVx/dT (3.17) 

so that C,,h can be determined from the properties of 
the A curve alone. 

It is interesting that eq 3.17 gives the largest value 
that C, may have if the system is to remain thermo- 
dynamically stable.12 Indeed, this is general for any 
line of constant Y. Write 

(bP/bT)v = (bP/dT)Y + (bP/bY)r(dY/bT)v 

= (bP/bT) y + (bP/b V )  T (b V/bY)  T (bY/dT) v 

= (bP/bT)y - (bP/bV)r(bV/bT)y (3.18) 

Substituting into eq 3.11 

(11) RI. J. Buckingham and W. M.  Fairbank, PTOQT. LOW Temp. 

(12) J. C. Wheeler and R. B. Griffiths, Phys. Reo., 170, 249 (1968). 
Phya., 3, 80 (1961). 
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C, = C, - T(bP/bT)y(bV/bT)y + 
T(bP/bV) r(bV/bT)y2 

5 C, - T(bP/bT) y(bV/bT)y (3.19) 

since, for stability, (bP/bV)p 5 0. 
If along a line C, tends to become larger than this, a 

first-order transition will occur, as described earlier, 
even if C, does not tend to infinity, because of the im- 
plied positive (though now finite) value of (dP/bV)T. 

4. Statistical Thermodynamics 
We shall now examine the consequences of the as- 

sumptionlEb discussed in the Introduction, that  the 
canonical partition function Q may be factored into a 
lattice part Q1 and a “spin” (order-disorder) part Q,, 

Q = Q1Qs (4.1) 
Q, being a function of I = J/kT where J, in turn, de- 
pends only on the density, p, or the volume, V, of a 
fixed amount of material. We shall write dQ,/dI = 
Q8’ and d2Q8/d12 = Q8”. 

The thermodynamic functions can be calculated 
from Q by logarithmic differentiation using the stan- 
dard formulas, and they may be divided into lattice and 
“spin” parts. Thus, for the pressure and energy of the 
system we write 

P = kTbInQl/bV + (Q,’/Q,)dJ/dV = PI + P, (4.2) 

E = kT2b In Ql/dT - (Q,’/Q,)J = El + E, (4.3) 

By further differentiation of eq 4.3 we obtain 

c, = CV,l + C”,, 

= C,,i - (Q8’/Qs)2J2/kT2 + (Q,”/Q,)J2/kT2 

= C,,i - ES2/kT2 + (QS“/Q8)J2/kT2 (4.4) 

and by appropriate use of eq 4.2, 4.3, and 4.4 

T d J  E, d 2 J  
(%)T = (%)T,I + - J2 (dV)  - c,,, - -- J dV2 (4.5) 

and 

The relations between C,,,, ( ~ P / ~ V ) T ,  and (bP/bT)V 
in the limit C,,, 4 0) are graphically brought out by 
eq 4.5 and 4.6, and eq 4.5 also illustrates the appearance 
of the instability when C,,8 increases without limit, for 
it is seen that this will eventually cause (bP/bV)T to 
become positive. 

Comparison of eq 4.6 with eq 2.14, allowing C, and 
C,,, to  become infinite, or division of eq 4.5 by eq 4.6 
under the same conditions with subsequent use of eq 
2.15, shows that 

Th-ldTx/dV = J-’dJ/dV (4.7) 
where, of course, dTx/dV = (dV,/dT)-’. Equation 4.7 
is to be expected, since Q, is assumed to  depend only on 
J/kT. Thus any specially characterized temperature, 
such as Ti, should be proportional to J. Equation 4.7 

holds, of course, only for the hypothetical X line, which 
lies in the unstable region which is never reached, but 
it and the subsequent equations, which have the same 
limitation, can have some practical value beca,use the 
region of instability is usually very narrow. 

Substituting eq 4.5 and 4.6 into eq 2.11 (with con- 
stant C, in the latter substituted for constant C,), 
using eq 4.7 and taking T = Tx, we obtain 

where 

(bP/bV)~,o = (dP/bV)T,i - (E,/J)d2J/dV2 

= (bP/bV)T,l - (Es/TJd2Tx/dV2 (4.9) 

If we let C, 4 a, then, since dPx/dT, (dP/bT),,l and 
(bP/bV)~,o are finite, the final term in eq 4.8 must re- 
main finite, and, indeed, it is seen that the term in 
brackets vanishes since dTx/dV = (dV,/dT) -l. 

Further, if C,,8 becomes infinite as In IT - Ti/,  or as a 
small power of IT - Tx1-l, it  may be shown by appli- 
cation of 1’Hospital’s rule that the complete last term 
in eq 4.8 vanishes, so that (4.8) becomes 

dPx/dT = (bP/Wv,i ,x  + (bP/bV)T,o,xdV,/dT 

(4.10) 

This means that were it not for the last term in eq 4.9, 
which may generally be expected to be a relatively small 
correction, the change of pressure along the X line 
would be the same as if the X transition did not exist 
a t  all. Since (bP/bT)~,1 = - (bP/bV)~,l(bV/bT)p,, 
and the change of volume with temperature along the 
X line (since it is accompanied by a change in pressure) 
may be expected to be considerably larger than the rate 
of expansion at  constant PI, we see that the first term 
in eq 4.10 is less important than the second. Thus 
roughly speaking the compressibility along the X line 
is not far different from that a t  constant temperature. 
The differences, however, are, as we shall see, of con- 
siderable interest. 

If we set Y = C, in eq 3.11, we have 

T(b&’bT)c, = Cv + T(dP/bT)v(bV/aT)c, 

Equations 4.6 and 4.7 then give 

T(bS/bT)c, C,,I + T(bP/bT)v,l(bV/bT)c, + 
cv,,[l - (dV/bT)c,(bT,/dV/’) ] (4.11) 

Again the last term will vanish in the limit, leaving 

dSx/dT = (bfl/aT)v,i,x + (dP/bT)v,i,xdVx/dT (4.12) 

This shows, since ( b P / t ~ T ) ~ , l  = (bS/bT),,I, that  the 
order-disorder entropy does not change along the X 
line, which, of course, could be anticipated, since the X 
point occurs a t  a fixed value of J/kT. 

If J depends on P rather than V, it becomes conveni- 
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ent to  deal with the enthalpy H = E + P V  and to use 
the isothermal-isobaric partition functionsc 

z = Z1Z, &e-XL/kT (4.13) 

Here HL is the enthalpy of the entire assembly of 
molecules when held in the Lth quantum state a t  con- 
stant pressure. We have, in this case, for the Gibbs 
free energy 

G =  - k T l n Z  (4.14) 

and the various thermodynamic functions are found by 
differentiation 

V = -kT(b In Zl/dP), - (Z,’/&)dJ/dP = VI + V ,  

(4.15) 

H = kT2@ I n z ~ / b T ) p  - (Zs’/Z,)J = Hi + di, 
C p  = cp,~ - Hsz/kT2 + (Zs”/Z,)J2/kT2 

(4.16) 

(4.17) 

I n  analogy to eq 4.10 and 4.12 we obtain 

dVx/dT = (bV/bT) P ,i,x + (bV/bP).,o,xdPx/dT 

(4.20) 

(4.21) a x / d T  = (dfi/bT)~,i,x - (bV/bT)p,i,xdPx/dT 
In eq 4.18 and 4.20 

( ~ V / W T , O  = (bV/bP)T,l+ (Hs/Tx)d2Tx/dP2 (4.22) 

which is not the reciprocal of (dP/dV)T,o. In  eq 4.22 
we have used the relation, analogous to eq 4.7 

J-‘dJ/dP = Tx-‘dTx/dP (4.23) 

from which J-’daJ/dP2 = Ti- ‘d2Th/dP2. 
Should J depend on some variable Y ,  or 2, other than 

V or P, we could derive similar equations, provided we 
could set up the corresponding partition function. 
However, if we continue to use one of the usual parti- 
tion functions, say the isothermal-isobaric partition 
function, and assume that i t  can be factored as in eq 
4.13, this will mean that J is a function of T as well as 
P. The larger terms in eq 4.17-4.19 will remain al- 
most as before, but there will be extra small terms in 
these equations. I n  eq 4.18 they can be incorporated 
in (bV/bP)~,o and in eq4.19 we can define a (bV/bT)p,~. 
If we do this, we will obtain eq 4.20 with (bV/bT)p,o 
substituted for (bV/bT)p,l. A similar situation holds 
with eq 4.21. As implied, the large terms in eq 4.17- 
4.19 will be slightly altered: J, where it occurs as a 
factor, will be replaced by J - TbJ/bT. A similar 
change will occur in eq 4.23. 

If (bv/bP)T,o were equal to  (bV/bP)T,1 and if 
(.bP/dv)~,o were equal to (bP/bV)T,l, then eq 4.10 and 
4.20 would clearly be equivalent. This is approxi- 
mately true if the second terms on the right-hand 
sides of eq 4.9 and 4.22 are relatively small, which is 

true a t  least in the case of liquid helium. If, as we may 
generally expect, d2Tx/dV2 has the same sign as 
dTXz/dP2, the agreement will be improved. 

If, as in the case of the X transition of liquid helium, 
C, appears to become infinite logarithmically, it is of 
interest to know how C, behaves in the neighborhood 
of the X line. In  order to study this we may use the 
thermodynamic equation 

C, Cp 4- T(bV/bT)p2(dP/dV)T (4.24) 

and substitute from eq 4.18 and 4.19, obtaining 

where a = 2Tx(dV/bT)p,idPx/dT and b = T,(bV/ 
bP)T,o(dPX/dT)2. Here we have set T = Tx, since we 
are interested in the behavior of C, close to the transi- 
tion. 

It is noted that a and b depend only on the slope of 
the X line and the lattice quantities. They may, there- 
fore, be taken as constants near the X line. It is found, 
a t  least for the X transition in liquid helium, that b is 
much greater than a and the behavior of C, depends 
very largely on b. It may be seen that C, is indis- 
tinguishable from C, until C,,, becomes of the order of 
b. Then C, will gradually fall away from C,, finally 
reaching the finite limit 

C ” . h  = C,,l,, - ax - bx (4.26) 

which may be shown to be equivalent to eq 3.17 if we 
solve for (bV/bP)T,~,x and (bV/bT)p,l,x from eq 4.20 
and 4.21. It may be shown by differentiation of eq 
4.25 with respect to T ( P  constant), and passing to the 
limit C,,, -+ a, that C, approaches its limiting value 
with a cusp. 

5. Application to Liquid Helium 
To apply the equations of Section 4 to liquid helium 

we need to evaluate the “lattice” quantities. There is, 
of course, no rigid lattice in this case, so these are simply 
what the thermodynamic quantities (including V )  
would be as functions of T and P (since J is assumed to 
depend on P) if there were no order-disorder phenom- 
enon. At first13 it was assumed the lattice quantities 
could be identified with the contributions attributed 
to the phonons; this 

C, ,1 = 1 6 ~ ‘ k ~ T ~ / 1 5 h ~ ~ ~ p  (5.1) 
where c is the velocity of sound, and14b 

(5.2) 

where K T  is the compressibility, this being evaluated at  
0°K. Since it varies slowly with temperature the com- 
pressibility a t  0°K was also used directly to evaluate 
( ~ V / ~ P ) , J , ~ .  Then C,,X from eq 4.26 agreed fairly 

(13) 0. K. Rice, J. Amer. Chem. Soc., 91, 7682 (1969). 
(14) K. R. Atkins, “Liquid Helium,” Cambridge University Press, 

Cambridge, 1959: (a) p 63; (b) p 65; (e) p 128 ff. 
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well but not quite satisfactorilyls with eq 3.17, using 
data of Lounasmaa and Kojol8 and Kierstead'l in the 
latter; dVx/dT, from the experimental datal8 involved 
on the right-hand side of eq 4.20, agreed similarly with 
direct experimental values. l7 But calculation of 
dSx/dT from eq 4.21, assuming (dX/bT),,l to  be negli- 
gible, as indicated by integrating eq 5.1, gave very poor 
results. Both14c c andlg KT have singularities a t  the X 
line, and eq 5.2 might break down for this or other 
reasons. Therefore, we tried, in unpublished work, 
simply using eq 4.21 to evaluate (bV/bT)p,l,x, but this 
effected no improvement in 

The difficulty could, of course, lie in the fundamental 
assumption, eq 4.13, of the factorizability of the parti- 
tion function; however, it was felt that  i t  might indi- 
cate that  the rotons, as well as the phonons, contribute 
to the lattice properties, and that only the interaction 
between rotons has to do with the order-disorder 
phenomenon associated with the X transition. Thus i t  
might be more reasonable to find the appropriate value 
of C,,I and other quantities by interpolating the parts 
outside the region of the X transition into that region.2o 
If J depends only on P, the C,,, curves should have the 
same shape at  different pressures. Modifying and 
generalizing an empirical equation of Buckingham and 
Fairbank," C,,, (in joules g-l deg-l) was represented by 
the following equations (in which x = T/Tx) 

C,,, = [61.8 - 90.9 log (1 - ~ ) ] e - ~ . ~ / ~ ,  for T < Th 

C,,, = [- 17.30 - 16.42 log (x - 1) ]e-1*7/21 for T > Tx 

C,,, was assumed to be proportional to TK.27, the con- 
stant of proportionality being adjusted to  fit the data, 
and with these values of C,,, and C,,I the specific heat 
data were very well represented. 

With (bV/BT), the situation is complicated because 
of the peculiar behavior of the coefficient of expansion 
in liquid helium. (bV/bT), is positive-at low T, be- 
comes negative at  x = and again positive slightly 
above TA. So (bV/bT),,l was evaluated a t  the 
points14~18J1 on the saturated vapor curve where 
(b'V/bT), = 0 by using eq 4.19, since the last term in 
this equation could be evaluated from eq 4.23. It was 
found that the empirical form ATK.27 fits these two 
points around zero pressure and with adjustment of the 
constant A could be used a t  higher pressures. The 
calculated values fit the experimental values of (bV/ 
bT), closer than 10.1" from the X point. If the rotons 
contribute to  the lattice properties, then far from the X 

or dVx/dT. 

(16) H. C. Kramers, J. D. Wasscher, and C. J. Gorter, Physica, 18, 
329 (1952) (used to calculate Ha). 
(16) 0. V. Lounasmaa and E. Kojo, Ann. Acad. Sci. Fenn., 

Ser. A ,  6, No. 36 (1959); 0.  V. Lounasmaa, Cryogenics, 1, 212 
(1961). 
(17) H. A. Kierstead, Phys. Rev., 162, 163 (1967). 
(18) (a) C. Boghosian and H. Meyer, Phys. Rev., 152, 200 (1966); 

163, 206 (1967); (b) D. L. Elwell and H. Meyer, ibid., 164, 245 
(1967). 
(19) H. A. Kierstead, Phys. Rev., 153, 268 (1967). 
(20) 0. K.  Rice and Dc-Ren Chang in "Critical Phenomena in 

Alloys, Magnets, and Superconductors,'' R .  E. Mills, E. Ascher, and 
R. I .  Jaffee, Ed., McGraw-Hill, New York, N. Y., 1971, p 105. 
(21) R. L. Mills and S. G. Sydoriak, Ann. Phys. (New Y o T ~ ) ,  34, 

276 (1966). 

point, where the interaction between rotons is negligible 
but the negative coefficient of expansion (which is pre- 
sumably attributable to them) is already evident, this 
feature should be reflected in (bV/bT)p,~.  The form 
AT5.27 obviously cannot reproduce these intricacies, 
but it seems to be a sufficiently good representation 
near the X point to make it possible to separate lattice 
and order-disorder contributions. Since (bV/bT),,, is 
positive near the X line i t  cannot be directly connected 
with the negative contribution of the rotons, but, 
rather, the effect of the rotons must be an indirect one, 
possibly connected with the apparent divergence of 
terms in eq 5.2. 

Having (bV/bT)p,l, we may find (bV/bP)T,o,A from 
eq 4.20, and (bV/dP)T,l,A may then be found by esti- 
mating H , , x  from C,,,. It is then possible to  calculate 
( b v / b P ) ~  from eq 4.18 and C, from eq 4.25. (C, is 
needed for comparison with specific heat data a t  higher 
pressures.) Equation 4.20 is valid, of course, only in 
the immediate neighborhood of the X line, where the 
lines of constant C, parallel the X line, and its use out- 
side this region serves to give only a rough idea of the 
magnitude of (bV/bP)T,o. This is satisfactory for C,, 
because where the procedure breaks down the terms in 
b predominate in eq 4.25 and the error cancels. The 
values of (bV/bP)T and (bP/bT), can be properly 
compared with experiment only close to the X point. 
On the whole, the agreement in this region was good, 
so that the separation into lattice and order-disorder 
parts seemed successful. 

Having found the values of the lattice quantities, i t  is 
now possible to check eq 4.21 for dXA/dT. The results 
are shown in Table I, which gives the lattice quantities 
m found by the procedures outlined in the preceding 
paragraphs. For comparison, the values obtained 
from eq 5.1 and 5.2, together with the assumption that 
the lattice compressibility is the same as that observed 
a t  OOK,  are shown in parentheses. 

Table I bears out the general idea that the roton ex- 
citations contribute to the lattice quantities. The 
values of Cp,l,x are considerably larger than these calcu- 
lated from eq 5.2 (shown in parentheses). The values 
of (bV/bT)p,l,A are also greater than those inferred 
from eq 5.1 neglecting possible effects of divergence of 
terms in this equation. 

Of interest is the fact that a t  the higher pressures 
- (bV/bP)T,~,x is smaller than - (bV/bP)*,l,A = 
- ( b v / b P ) ~  at  0°K. One would not expect the lattice 
compressibility to decrease with increasing tempera- 
ture, but this appears to be a secondary effect, which 
occurs because of the negative coefficient of expansion. 
At the saturated vapor pressure the contraction between 
0°K and the X point is about 0.7%, but a t  25 atm it is 
2.0%, which would seem to be sufficient to have an ap- 
preciable effect on the lattice compressibility, affecting 
it similarly to compression by an external force. 

6. Transitions in the Ammonium Halides 

As noted in section 1, NH4CI and NH4Br show X 
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Table I 
Values of Thermodynamic Quantities for Liquid Helium 

C,,l.X, (dV/ aT) P, I A! H . , L  - ( a v / b P ) T . l  ,h, ThdSh/dTh, oal mole-' deg-1 
Calcd Exptl 

0.050 1.43 (0.2) 0.70 (0.304) a.le(2.68) 0.00877(0.00782) 5.5 (2.0) 5.6 
14.69 0.333 (0.06) 0.44(0.035) 1.98(2.10) 0.00326(0.00348) l.SS(0.18) 1.74 
29.81 0.256 (0.02) 0.49 (0.008) 1.75 (1.58) 0.00162 (0.00228) 1.41 (0.04) 1.40 

cal atm-1 mole-1 Px, atm Gal mole-1 deg-I om8 mole-1 deg-1 oal mole-1 

phenomena associated with the orientation of NH4+ 
ions. A number of properties of these crystals (e.g., 
lattice distance, ultrasonic attenuation, elastic con- 
stants, and heat effects) have been investigated22 in the 
neighborhood of the X point, and hysteresis effects were 
observed of the type to be expected if an instability of 
the kind discussed in sections 2 and 4 occurs. These 
phenomena were treated by Garland and Renardsb 
using the separation of the partition function shown in 
eq 4.1, assuming that J depends upon V .  

Renard and Garlandz3 made a detailed investigation 
of the thermodymamics of ammonium chloride. De- 
spite the fact that  this seems to be a case where V is 
the proper independent variable, they plotted C,/T 
against (bV/bT). a t  1 atm over a small range of T just 
below T i ,  and similarly they plotted (bV/dT),  against 
( b V l b P ) ~ .  Finding nearly linear curves, they used 
the equivalent of eq 2.6 and 2.9 (with eq 2.10 and 2.12) 
to find dPx/dT (equal to 116.9 and 110 bar deg-I, 
from eq 2.6 and 2.9, respectively), dSx/dT = 2.73 X 
lo6 erg deg+ moIe-', and VX-'dVX/dT = - 3.60 X loW4 
deg-'. The actual determination of the curve was 
slightly ambiguous on account of the hysteresis, and the 
transition was measured best when approached from 
above. This gave Vx-'dVx/dT = -3.85 X 
deg-', in good agreement. 

Renard and Garland also tested eq 4.10. In  calcu- 
lating dPA/dT they assumed that (bP/bV).r,o,X could 
be obtained by extrapolating (bP/dV)T from above 
the X point, i.e., they neglected any changes in E,  above 
the X point (actually they set E, = 0, which is equiva- 
lent). The values obtained agreed reasonably well with 
experimental values obtained directly from the X curve. 

The results of Renard and Garland may be inserted 
into (3.17). This will give, a t  least approximately, the 
value C, could attain if no instability occurred near 
the X line. Equation 3.17 gives C,,x = 25 cal mole-' 
deg-'. Using measurements of the compressibility 
and the coefficient of expansion L a ~ s o n ~ ~  calculated 
C, from C, and found that C, was almost constant, in- 
creasing from around 19 to between 21 and 22 cal 
mole-' deg-' a few tenths of a degree below the X 
temperature. At first sight this seems very strange, 
but the values of C, are already so close to 25 cal 

(22) P. Dinichert, Helv. Phys .  Acta, 15, 462 (1942); A. Smits, G. 
J. Muller, and F. A. Kroger, Z .  Phys .  Chem., B38, 177 (1937); C. W. 
Garland and C. F. Yarnell, J .  Chem. Phys . ,  44, 1112 (1966); C. W. 
Garland and R. Renard, ibid., 44, 1139 (1966); C. W. Garland and 
C. F. Yarnell, i b id . ,  44, 3678 (1966); N. J. Trappeniers and T.  J. 
van der Molen, Physica, 32 ,  1161 (1966); N. J. Trappeniers and W. 
Mandema, ibid.. 32, 1170 (1966); A. V. Voronel' and S. R. Garber, 
SOP. P h y s . - J E T P , . 2 5 ,  970 (1967); J. R .  Pilbrow and J. M. Spaeth, 
P h y s .  Status Solzdz, 20, 225 (1967) ; A. A. Boiko, Sov. Phys.-Crystal- 
Zogr., 14, 539 (1970). 

(23) R. Renard and C. W. Garland, J .  Chem. Phys .  45,763 (1966). 
(24) A. W. Lawson, P h y s .  Rev., 57, 417 (1940). 
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Figure 5. Isotherm for ammonium chloride, showing first-order 
transition. AL is the decrease in length of a specimen from its 
length a t  600 bars, in microns; P i s  the pressure in bars. 

mole-' deg-' as to be not far outside the limits of 
error. C ,  may tend toward a high value, but it cannot 
get very high before the instability sets in. Probably 
this is why the instability is so easily observed in this 
case. 

Of particular interest from our present point of view 
are recent experiments of Garland and WeinerIz6 in 
which they have measured the change in length of a 
single ammonium chloride crystal as a function of 
temperature and pressure. Isotherms at  250.04"K 
(Px - 830 bar) and 255.75"K (PX = 1490 bar) showed 
discontinuities, signaling a first-order transition, while 
no discontinuities were observed a t  256.94 and 266.37"K. 
The curve for the lowest temperature is reproduced 
in Figure 5. From this figure it seems clear that  even 
where the first-order transition is most pronounced 
the isotherms become very flat before the transition is 
reached, and there is no indication that the transition 
occurs to avoid a region where (bP/bV)T is infinite. 
It may, however, be avoiding a region where (bP/bV)r 
would tend to  become barely positive. It must be, 
therefore, that  C,, though it increases markedly in the 
region of the transition, is not tending toward infinity, 
but on the other hand, a t  the lower temperatures it pre- 
sumably is tending toward a value greater than that 
given by eq 3.17. If (bP/bV)T is given by eq 4.5, there 
is presumably near-cancelation between the negative 
(bP/bV)T,o and the positive (T/J2)(dJ/dV)zC,8, = 
(T/Tx') (dTddV) 'Cv,s. According to the data of 
Renard and Garland,* I dTh/dVl decreases slightly with 
increasing temperature and pressure, whereas - (bP/ 
bV)r,o is expected to increase with increasing pressure. 
Thus it is not surprising that the negative term pre- 
dominates a t  high temperatures. 
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